Learning Classifier Systems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS

Designing an effective criterion for selecting the best rule is a major problem in theprocess of implementing Fuzzy Learning Classifier (FLC) systems. Conventionally confidenceand support or combined measures of these are used as criteria for fuzzy rule evaluation. In thispaper new entities namely precision and recall from the field of Information Retrieval (IR)systems is adapted as alternative...

متن کامل

Distributed Learning Classifier Systems

Genetics-based machine learning methods also called learning classifier systems are evolutionary computation based data mining techniques. The advantages of these techniques are: they are rule-based models providing human-readable learning patterns; they are incremental learners allowing the system to adapt quickly in dynamic environments; and some of them have linear 0(n) learning complexity i...

متن کامل

Learning Classifier Systems

Learning Classifier Systems are a machine learning technique that may be categorised in between symbolic production systems and sub-symbolic connectionist systems. Classifiers are cognitive paradigm for adaptation that learn in environments of perpetual novelty with minimal and delayed reward. They employ two principle processes (1) reinforcement learning called ‘trial-and-error’, and genetic e...

متن کامل

new criteria for rule selection in fuzzy learning classifier systems

designing an effective criterion for selecting the best rule is a major problem in theprocess of implementing fuzzy learning classifier (flc) systems. conventionally confidenceand support or combined measures of these are used as criteria for fuzzy rule evaluation. in thispaper new entities namely precision and recall from the field of information retrieval (ir)systems is adapted as alternative...

متن کامل

Learning classifier systems: a survey

Learning Classifier Systems (LCSs) are rule-based systems that automatically build their ruleset. At the origin of Holland’s work, LCSs were seen as a model of the emergence of cognitive abilities thanks to adaptive mechanisms, particularly evolutionary processes. After a renewal of the field more focused on learning, LCSs are now considered as sequential decision problem-solving systems endowe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Soft Computing - A Fusion of Foundations, Methodologies and Applications

سال: 2002

ISSN: 1432-7643,1433-7479

DOI: 10.1007/s005000100110